Paper: | SPTM-P13.5 |
Session: | Detection, Estimation, Classification Theory and Applications |
Time: | Friday, May 19, 14:00 - 16:00 |
Presentation: |
Poster
|
Topic: |
Signal Processing Theory and Methods: Detection, Estimation, Classification Theory and Applications |
Title: |
A statistical test for impropriety of complex random signals |
Authors: |
Peter Schreier, University of Newcastle, Australia; Louis L. Scharf, Colorado State University, United States; Alfred Hanssen, Universitetet i Tromso, Norway |
Abstract: |
A complex random vector is called improper if it is correlated with its complex conjugate. In this paper, we present a generalized likelihood ratio test (GLRT) for impropriety. This test is compelling because it displays the right invariances: The proposed GLR is invariant to linear transformations on the data, including rotation and scaling, just as propriety is preserved by linear transformations. Because canonical correlations make up a complete, or maximal, set of invariants for the Hermitian and complementary covariance matrices under linear transformations, the GLR can be shown to be a function of the squared canonical correlations between the data and its complex conjugate. This validates our intuition that the internal coordinate system should not matter for this hypothesis test. |